IAFWA Research Update on the Target Animal Safety of Chloramine-T to cooland warmwater fish

Mark P. Gaikowski¹, Christine Densmore², and Wendi J. Larson¹

U.S. Geological Survey

¹Upper Midwest Environmental Sciences Center ²Leetown Science Center

Assumptions

- Walleye and channel catfish selected as representative sensitive species based on hydrogen peroxide target animal safety
- Fry are generally more sensitive than fingerlings
- Chloramine-T is more toxic as exposure temperature increases
- Chloramine-T is more toxic in soft, acidic water

Toxicity Assessment

- Standard Treatment Regimen
 - 60-min exposures of 20 mg/L administered once daily on four consecutive days
- Assess acute toxicity to fry
 - Coolwater: walleye, northern pike, lake sturgeon
 - Warmwater: channel catfish and largemouth bass
- Gross necropsies / histopathology
- Feeding behavior

Toxicity Assessment

- Walleye and channel catfish were used to assess
 - temperature
 - WAE 15, 20, or 25°C
 - CCF 22, 27, 32°C
 - exposure duration: 60 or 180 min
 - life stage: fry vs. fingerling
 - alkalinity and hardness: walleye only
 - histopathology

Methods

- Chloramine-T concentrations 0, 20, 60, 100, or 200 mg/L
- Four consecutive, once daily exposures followed by a 96 h observation period
- Concentrations Hach DPD method
- 15 L glass aquaria
- Aquaria were flushed for 60 min following each exposure
- Feeding behavior
- Gross necropsies

Methods

- Alkalinity and hardness
 - 1 L glass aquaria, 3 fish per aquaria, 6 aquaria per concentration
 - ASTM reconstituted soft water
 - Alkalinity = 30-35 mg/L CaCO₃
 - Hardness = 40-48 mg/L CaCO₃
- Histopathology screening
 - 0, 20, 50, and 80 mg/L
 - 80 L fiberglass tanks, 36 fish per tank
 - 12 consecutive, once daily 180 min exposures
 - Fish necropsied after 12th exposure, then 7 and 14 d after the last exposure

Walleye fry during CI-T exposure.

Necropsy of walleye fry after CI-T exposure.

Mortality of coolwater fry exposed to CI-T

Mortality of warmwater fry exposed to CI-T

Effect of temperature on the toxicity of CI-T to walleye fry

Effect of temperature on the toxicity of CI-T to channel catfish fry

Effect of exposure duration on the toxicity of CI-T to fry

Effect of life stage on the toxicity of CI-T

Effect of water chemistry on the toxicity of CI-T

Gross necropsy and feeding behavior

- Pale gills in dead fish following treatment
- Pale translucent livers in northern pike that died following 200 mg/L treatment
- Feeding of walleye and channel catfish reduced by 100 and 200 mg/L treatment

Histopathology screen

Walleye treatment pathologies Hepatocellular necrosis – 20 mg/L

Skin epithelial and EGC hyperplasia - 50 mg/L

Lymphocyte aggregate – 80 mg/L

Skin normal epithelia – 50 mg/L

Treatment Pathologies

 Pathologists were unaware of treatment concentration for all slides except blood cytology

Effects?

 Spleen –increase in degenerative changes in walleye at 80 mg/L

No other readily apparent treatment related pathologies

Hepatocellular necrosis in walleye

Summary

A therapy of four consecutive, once daily chloramine-T treatments of 20 mg/L for 60 min is safe for cool- and warmwater fish.